
Lab 6: Session Data in Flask
GW CS 2541: Database Systems and Team Projects - 2022
Prof. Tim Wood, Ethan Baron, and Catherine Meadows

1



2

Has this ever 
happened to you? 

Why do you think we 
need this feature? 



Session Data

● “Session” refers to the time between a client logging in to the server and 
logging out of the server 

● With Flask, Session data is stored in the client’s browser on top of cookies
● Each client has their own session that is assigned a Session ID  
● Use Cases

○ Remember a user when they log in 
○ Store items in a cart while shopping online

● Sessions last for 31 days unless SESSION_PERMANENT is set to false (in 
which case they last until the browser or tab is closed)

3



Using Session with Flask

● The Session object is a dictionary object with key-value pairs of session variables and 
associated values 

● For session data to be encrypted, also set a SECRET_KEY

4

session[‘username’] = “admin” session.pop(‘username’, None)

session.clear()

To set a ‘username’ session variable: To release a session variable:

To clear all session variables:

app.secret_key = “any string”

To set the session secret key:



Redirecting in Flask 

5

from flask import Flask, redirect, url_for

app = Flask(‘app’)

@app.route(‘/’)

def login():

...

 

@app.route(‘/logout’)

def logout(): 

session.clear()

return redirect(‘/’)

app.run(host=’0.0.0.0’, port=8080)

● The redirect() function allows us to redirect 
users to a URL that we specify 

● Instead of specifying a URL, we can also 
redirect to a function using url_for()

● For example, the following lines would be 
equivalent for our code example:

redirect(‘/’)

redirect(url_for(‘login’))

Tip: In repl.it, view your 
web app in a new tab rather 
than the default window or 
your redirect() functions 
may not work correctly 



Session Example

6

from flask import Flask, session, redirect

app = Flask(‘app’)

app.secret_key = “secret”

... 

@app.route(‘/home’)

def home(): 

if ‘name’ in session:

return render_template(“home.html”)

return redirect(‘/’)

app.run(host=’0.0.0.0’, port=8080)

<html>

<body>

<h1> Welcome, {{ session[‘name’] }} </h1

</body>

</html>

home.html

We can access our 
session variables in 

templates, too!  

Why do we check the 
session to make sure a 
user is logged in?



Refresher: Form Data

7

from flask import Flask, render_template, request

app = Flask(‘app’)

@app.route(‘/’, methods=[‘GET’, ‘POST’])

def get_username():

if request.method == ‘POST’:

uname = request.form[“username”]

return render_template(‘simple_form.html’)

app.run(host=’0.0.0.0’, port=8080)

<body>

 <form action="/" method="POST">

   <input type="text" name="username">

   <input type="submit" name="submit">

 </form>

</body>



Common Mistakes / More Tips! 

1. You must set up your database connection and create a cursor object 
within each function in your Flask app

2. If you are getting a Python indentation / tab error but everything looks 
aligned on your screen, this is likely due to a collaboration lag in Repl. Have 
every group member check the spacing on their own screen and adjust!

3. If you want styling tips or aren’t sure about syntax for HTML / CSS, 
w3schools.com is a great resource!

4. If you need to reset your database, run the following command in the Shell:

8

sqlite3 <db file name> “.read <sql file name>”



Activity 1: Login Page

1. Create a login page that takes a username and password, verifies the user 
is in the database, and signs them in

○ Display an error message on the login page if authentication fails

2. Upon successful login, the user should be redirected to a home page that 
displays “Welcome, <NAME> ”  at the top (using session variables!)
a. Add a Sign Out button on the home page that clears the session and redirects the user 

back to the login page 
b. Users should not be able to access the home page if not signed in

9



Activity 2: User Login

1. Extend activity 1 so that when a username and password is determined to 
be in the database, also store the type of user in a session variable (The 
three user roles are: Student, TA, Professor)

2. When signed in, the home page should display different things based on 
the type of user stored in the session

○ Students can view the student roster (name, ID, and email of all students)
○ TAs can view the student roster and engagement points
○ Professors can view the student roster, engagement points, and grades

10


