
9. Agile Development
CSCI 2541 Database Systems & Team Projects

Wood

Slides adapted from Lucas Chaufournier

sTeams

This project is huge, how do we
possibly get started working on it?

How do we decide who
should work on what?

How do we make sure
we can deliver on time?

How do we make progress
without being in the same place?

GW CSCI 2541 Databases: Prof. Tim Wood

Software Development Lifecycle (SDLC)
“A process that produces
software with the highest
quality and lowest cost in the
shortest time possible.”

Provides a set of phases “to
quickly produce high-quality
software which is well-tested
and ready for production
use.”

A strong emphasis on testing,
as you need to ensure code
quality at every release.

 6

Requirement
Analysis

Planning

Architectural
Design

Software
Development

Testing

Deployment

Source: https://stackify.com/what-is-
sdlc/

ÉPÉE

GW CSCI 2541 Databases: Prof. Tim Wood

Agile
A methodology for delivering software to customers faster
and with limited headache.

Instead of having large product launches, product features
are released in smaller increments.

Requirements and designs are continuously reevaluated to
make teams flexible to change

Key concepts are open communication, collaboration,
adaptability, trust.

A value system rather than a framework or defined set of
steps.

 7

2 vsIterqt.gg

If Agile is just a set of
values how does it help us?

This is where Scrum and
Kanban come in.

Scrum

GW CSCI 2541 Databases: Prof. Tim Wood

Scrum
Scrum is a framework for getting things done

Scrum encourages teams to learn from their past, work
together on problems, and reflect to always improve.

Designed to allow teams to improve and be adaptive to
change as they work on projects and reprioritize features as
needed.

Work is organized into increments that are completed in
sprints.

Releases generally happen at the end of a sprint or a series
of sprints.

 10

More Info: https://www.atlassian.com/agile/scrum

GW CSCI 2541 Databases: Prof. Tim Wood

Scrum Concepts
Scrum board - used to represent stories in progress.

Sprint - A period of time (usually 2 weeks) of which work will be
completed.

A User Story - The smallest unit of work, usually written in human
readable terms

﹘ i.e. When I click the login button, I am logged into the website.

Product Backlog - The total list of all todo stories relating to the
product. Includes new features, bug fixes, and enhancements

Sprint Backlog - The list of all todo stories to be completed by the end
of the sprint.

Increment - The goal for the end of the sprint. What should be
completed at the end of your sprint period.

 11

GW CSCI 2541 Databases: Prof. Tim Wood

The Scrum Ceremonies
Backlog Grooming: Prioritize items and clean stories to keep the
backlog up to date

Sprint Planning: Deciding what stories will be undertaken for the next
sprint.

Sprint: The time period during which developers actually undertake the
work for the increment and make progress. Usually around 2 weeks.

Daily Stand Up: Allows for everyone to update their status and keep
everyone on the same page and voice concerns.

Sprint Review: Team gets together to demo what was completed during
the sprint.

Sprint Retrospective: Team meets to discuss things that went well and
that need work.

 12

scrum master lead

2

GW CSCI 2541 Databases: Prof. Tim Wood

Scrum in Review
A incremental process that favors working in sprints
and deploying features on a set release schedule.

Key metric is burndown, the number of stories
completed in a sprint.

It’s the entire teams responsibility to learn from past
mistakes and work together to grow.

Can work great, but its structured timeline is hard to
adapt to our projects

 13

Kanban

GW CSCI 2541 Databases: Prof. Tim Wood

Kanban
Relies on Real-time communication of capacity and full transparency of
work

The amount of work in progress is matched to team capacity to make
sure things are kept on schedule and no one is overwhelmed.

Work items are represented visually on a kanban board so any team
member can view the status of items.

The kanban board is the single source of truth for progress. All
impediments and blockers are clearly made visible.

It's the entire team's responsibility to ensure items are moving efficiently
through the process.

Releases generally happen as features make its way through the whole
process.

 15

More info: https://www.atlassian.com/agile/kanban

T

GW CSCI 2541 Databases: Prof. Tim Wood

Kanban Concepts
Kanban Board - A visual board with columns representing
the state of work. i.e. Todo, In Progress, Code Review, Done

A User Story - The smallest unit of work, usually written in
human readable terms.

Product Backlog - The total list of all todo stories relating to
the product.

WIP - The work in progress limit. The total number of stories
a developer can take on at a given time.

Cycle Time - The amount of time it takes for a unit to travel
through the process from In Progress to Done.

 16

GW CSCI 2541 Databases: Prof. Tim Wood

A Sample Kanban Board

 17

GW CSCI 2541 Databases: Prof. Tim Wood

The Kanban Process

 18

1. Team plans
features and

places stories
in todo

2. Developer
picks a story
from the top
of todo and
moves to in
progress.

3. Developer
finishes dev

work and
asks for code
review. Moves

Story here.

4. Developer
completes

code review
and moves

story to done
once

deployed.
5. Repeat

O

GW CSCI 2541 Databases: Prof. Tim Wood

Kanban in Review
A continuous process that favors limiting work in
progress and deploying features as they finish.

Key metric is minimizing the cycle time for a story

It’s the entire teams responsibility to keep stories
moving through the process.

Low overheard framework and very flexible to
change.

 19

GW CSCI 2541 Databases: Prof. Tim Wood

Course Project
You must follow the Kanban Agile Dev Methodology

We will use Trello to host project boards

﹘ Each team must create its own board (free account)

﹘ Invite mentor and instructors

Break the project down into user stories

Use Trello to track who is working on what

We will review your board and commit history to
track how work was divided up!

 20

É

GW CSCI 2541 Databases: Prof. Tim Wood

User Story
Describes a user interaction with the system with a well
defined output/result

Clicking “login” lets a user log into the website
﹘ User should enter username and password

﹘ Check form data against DB

﹘ Store authenticated user info in session or return error

DB can store course offering information
﹘ Define tables for storing a course (department, number, title?)

and a specific offering (course id, instructor, term, year?)

﹘ Pre-load sample courses and offerings into DB and provide

SQL syntax to insert and search for courses

 21

in a E

E

GW CSCI 2541 Databases: Prof. Tim Wood

Tips:
Try to keep user stories small

﹘ Something you can do in a day

Use Trello’s commenting feature to discuss issues /
make suggestions

﹘ Or ask for help from your mentor!

During Phase 2, you cannot talk with your Phase 1
teammates

﹘ But you can look back at your old Trello board and the

documentation you write!

 22

How do we all work on the same
code base without stepping over

each other?

 23

Why do we need version control
How do you decide whose changes to use?

Code Base

A B C

B

B

Jane Modifies file B

Ron Modifies file B

Code Base

A B C?08

Why do we need version control
The files conflict without a reasonable way to decide.

Code Base

A B C

B

B

Jane Modifies file B

Ron Modifies file B

Code Base

A B C

So what do we do?

There’s got to be a

better way…

Why do we need version control

Code Base

A B C

B

B

Jane Modifies file B

Ron Modifies file B

Code Base

A B C

Distributed Version
Control

Main Code Base

Think of your codebase like the main timeline

 28

A B C

Main Code Base

To make changes you first create a new branch

 29

A B C

New Branch

A B C
0

Any changes you make here are just on your
local branch and don’t affect the main code

base. You can experiment freely while
developing new features without worrying

about breaking the main branch.

Main Code Base

Entering the Modified State

 30

A B C

New Branch

A B C

Modified State

jetty

0
Tim

OL

The Staged State prepares your changes
for being merged back into the main

branch. It contains only the

code you’ve modified

Main Code Base

Entering the Staged State

 31

A B C

New Branch

A B C B

Modified Staged

DD

Committing your code, makes your
changes active in your branch. Anyone
who clones your branch will see your

changes. The changes ARE NOT active in
the main code base yet.

Main Code Base

Committing your changes

 32

A B C

New Branch

B

Staged

DA B C

Modified

D A B C

Committed

D
O

Main Code Base

Merging your changes to main

 33

A B C

New Branch

B

Staged

DA B C

Modified

D A B C

Committed

D

A B C D

B D

By merging to Main you:

•Take all files that have modifications

•Compare them against the main branch.

• If no ones made changes the changes are applied

• If someone modified the same code, you get a
merge conflict. Manually resolve it

How does this tie into
Git?

Main Code Base

Creating a git repo

 35

A B C

 git clone SOME_GIT_REPO

Main Code Base

Creating a new branch

 36

A B C

myBranch
A B C

git checkout -b myBranch

a
me

Main Code Base

Switching to an existing branch

 37

A B C

A B C

git checkout myBranch

myBranch

2

E

my branch 2

Main Code Base

Entering the Staged State

 38

A B C

A B C B

Modified Staged

D

git add fileB fileD

D

myBranch

Main Code Base

Committing your changes

 39

A B C

B

Staged

DA B C

Modified

D A B C

Committed

D

git commit -m “Adds support for new
endpoint”

All commits need a human

readable commit message

myBranch
z

Main

Getting your changes into Main with Pull Requests

 40

A B C

A B C

Committed

D

A B C D

git push origin myBranch

Pull Request
myBranch o

Main

Getting your changes into Main with Pull Requests

 41

A B C

A B C

Committed

D

A B C D

git push origin myBranch

Pull Request
myBranch
O

00

Pull Requests
Pull Requests allow you to inform others on your team
about a new features or code being added to the
codebase

They provide a way for teams to discuss changes
being made and enable an easy way to do code review

Changes in a pull request display whats been modified
and is to be merged into main if approved.

Once a pull request is approved by reviewers. The
code is merged into main and becomes a part of the
codebase.

 42

I

Main Code Base

Marking an official release of your code

 43

git tag phase1
commit-hash phase1

Merge Conflicts
Arise when two people
edited the same line in a file.

Require manual intervention

You need to go into the file
and decide which change
should be persisted.

Delete the line you don’t
want along with the added
lines from git.

Commit changes and git
merge again

 44

oaths

Code Reviews
Code Review is the process by which team members review each
others code for things like

﹘ Bugs

﹘ Style choices

﹘ Dead code

﹘ Security issues

﹘ Design Decisions

﹘ and much more

A good place to ask clarifying questions or act as knowledge
transfer

Code Reviews normally take place right before merging a branch
into main and is usually an iterative process.

Teams typically have rules that say a code change needs at least 1
review before merging

 45

I

@app.route('/')
def hello_world():
 visitDate = "March 2rd 2020"
 x = """
 <html>
 <body>
 <h1>Todays Date is {0}</h1>
 <p>Welcome to our website.</p>
 </body>
 </html>
 """
 #print("DebuggCode")
 # x = 0
 return outputText.format(x)

@app.route('/endpoint2')
def endpoint2():
 visit_date = "March 3rd"
 print("DEBUGG, VISITED")
 output_text = """<html>
 "<body>"
 <h1>Todays Date is {1}</h1>
 <p>Welcome to our website.</p>
 </body>
 </html>
 """
 return output_text.format(visit_date)

app.run(host='0.0.0.0', port=8080)

Sample Code

@app.route('/')
def hello_world():
 visitDate = "March 2rd 2020"
 x = """
 <html>
 <body>
 <h1>Todays Date is {0}</h1>
 <p>Welcome to our website.</p>
 </body>
 </html>
 """
 #print("DebuggCode")
 # x = 0
 return outputText.format(x)

@app.route('/endpoint2')
def endpoint2():
 visit_date = "March 3rd"
 print("DEBUGG, VISITED")
 output_text = """<html>
 "<body>"
 <h1>Todays Date is {1}</h1>
 Welcome to our website.
 </body>
 </html>
 """
 return
output_text.format(visit_date)

app.run(host='0.0.0.0', port=8080)

Variable naming style is not consistent,
Date is incorrect

Use a descriptive variable name

Remove Dead code

Remove debug statements to
keep code clean

This should be a zero instead of
a 1

Should we wrap these in a
paragraph tag?

A sample Code Review on Github

 48

Tips for working with Distributed Version Control

Use branch protection rules to protect your main branch from
being changed without code review

Always pull the latest changes before trying to merge to main.

Try to keep pull requests to small changes that are atomic.
This simplifies code review.

Name new branches feature/new-feature or bugfix/fixing-
bad-logic to make it easy to understand what a branch does.

Use git tags to mark official releases that never change.

Incorporate Peer Review into your git workflow.

 49

