THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

6b. HW/Exam Review

CSCI 2541 Database Systems & Team Projects

Wood & Chaufournier

Exam Logistics

SQL HW Review

Normalization HW Review

Shopping Cart

Lab on Sessions

Exam Logistics

Wednesday starting at 12:45PM

Exam will be on on paper and ??on computer??

- Short answer, multiple choice, T/F, SQL queries, etc
- Expect questions similar to Homeworks

Class ends at 3:25PM

- You can use both periods if you need

If you have a disability that affects your ability to complete the exam, contact me by Monday!

You...

may:

- Use 1 page (double sided) of hand written notes
- Use my SQL and normalization reference sheets
 - I will provide a copy

may not:

- Use a computer/phone/device to access any material not explicitly allowed by the exam
- Discuss questions or get help from anyone else
- Do anything else which violates the course or GW's academic integrity policies

Violating these policies will have severe consequences, including **failing** the course

Suggestions

Make your own notes

- Explain the core concepts to yourself by rewriting in your own words
- Writing out your own version of the key rules (2NF vs 3NF, lossless decomposition rules, etc) will help you fully understand them!
- Try to solve the homework problems without looking at solutions

Be an efficient test taker

- Hopefully nobody will get 100% on the exam
- Focus first on the sections you are most confident with
- Don't waste too much time on any one question

Next: SQL Queries

Schema for Company DB

- ∠ Employee
 - Connects to Department by Dno
- Department
 - Connects to Employee with Mgr_ssn
- C Dept_locations
 - Connects to department
- Project
 - Connects to Department
- 🕫 Works_On
 - Connects from Employee to Project
- Dependent
 - Connects to Employee

SQL HW

7. Retrieve the list of employees, the projects they are working on, and their salary.

SQL HW

7. Retrieve the list of employees, the projects they are working on, and their salary.

Just because a project is in a department, doesn't mean that employee works on it! Need to join using the works_on table.

select dname,lname,fname,pname,salary
from department
JOIN employee on department.dnumber=employee.dno
JOIN works_on on works_on.essn = employee.ssn
JOIN project on project.pnumber = works_on.pno

Complex Queries

Sometimes you need a subquery within a query

Or you need to combine results from queries

- UNION, INTERSECT, EXCEPT

Practice!

There is an extra copy of SQL HW3 if you want to try it again (Replit week 6)

Engage!

- Write a DB query problem and post on Slack in #engage

Any other questions on SQL?

Next: Normalization

Normal Forms - more definitions

2NF: A schema is in 2NF if

No nonprime attribute is partially dependent on the candidate key (i.e., depends on only part of a candidate key)

3NF: A schema is in 3NF if

- It is in 2NF and,
 - no nonprime attribute is transitively dependent on the
 - primary key (LHS must be a full key, unless RHS is a key)

BCNF: A schema is in BCNF if

- It is in 3NF and,
- LHS must be a super key

Normalization - Finding Keys

Q5b) Consider the relation R3 = (A, B, C, D), with the following functional

What is the Candidate Key for this relation? What normal form does *R3* satisfy? You may assume that all tuples are unique and attributes are atomic.

ZNF A.K

Normalization - Finding Keys

Q5b) Consider the relation R3 = (A, B, C, D), with the following functional dependencies:

- **AB** -> **C** and **C** -> **D**

What is the Candidate Key for this relation? What normal form does *R3* satisfy? You may assume that all tuples are unique and attributes are atomic.

```
Candidate Key is AB since:

AB \rightarrow C and

AB \rightarrow C \rightarrow D

so, with AB we can determine all attributes

Normal form is 2NF since C->D violates 3NF
```

Q6 Suppose we decompose Relation **R5** into two tables, **R51** and **R52**:

- R51 = (A, B, D, E) 🗂
- R52 = (A, B, C)

Will this be a loss-free decomposition, i.e., will we still be able to reconstruct all data by joining the two tables together? What normal form will *R51* and *R52* be in?

Q6 Suppose we decompose Relation **R5** into two tables, **R51** and **R52**:

- R51 = (A, B, D, E)
- R52 = (A, B, C)

Will this be a loss-free decomposition?

Lossless Decomposition test:

(from normalization lecture 2)

- R1, R2 is a lossless join
 decomposition of R with respect
 to F iff at least one of the
 following dependencies is in F+
- (R1 \cap R2) \rightarrow R1 R2
- (R1 \cap R2) \rightarrow R2 R1

R5 = (<u>A</u>, <u>B</u>, C, <u>D</u>, E) A -> C

> BD -> C ABD -> E

Q6 Suppose we decompose Relation **R5** into two tables, **R51** and **R52**:

- R51 = (A, B, D, E)
- R52 = (A, B, C)

Will this be a loss-free decomposition?

Lossless Decomposition test:

(from normalization lecture 2)

- R1, R2 is a lossless join
 decomposition of R with respect
 to F iff at least one of the
 following dependencies is in F+
- (R1 \cap R2) \rightarrow R1 R2
- (R1 \cap R2) \rightarrow R2 R1

R5 = (<u>A</u>, <u>B</u>, C, <u>D</u>, E) A -> C

BD -> C ABD -> E

R51 ∩ R52 = AB R51 - R52 = DE R52 - R51 = C

AB -> C is part of F+

Q6 Suppose we decompose Relation **R5** into two tables, **R51** and **R52**:

R51 is 3NF/BCNF since only ABD->E holds and ABD is the full candidate key R52 is 1NF since A->C holds and A is a partial candidate key, so it cannot be 2NF

Q6 Suppose we decompose Relation **R5** into two tables, **R51** and **R52**:

- R51 = (<u>A</u>, <u>B</u>, <u>D</u>, E) $R5 = (\underline{A}, \underline{B}, C, \underline{D}, E)$ - R52 = (A, B, S) How can we decompose and ensure -> C **3NF for all relations?** R2-JRI-R2 211 RINR2 ->RI ARD -> -RI Losie -lee , HEX

Q6 Suppose we decompose Relation **R5** into two tables, **R51** and **R52**:

- R51 = (<u>A</u>, <u>B</u>, <u>D</u>, E)
- -R52 = (A, B, C)

How can we decompose and ensure 3NF for all relations? ABCD

R51 is already 3NF To fix R52 we could use R53 = (\underline{A} , C) This must be 3NF

R51
$$\cap$$
 R53 = A
R51 - R53 = BDE
R53 - R51 = C
A -> C is part of F+

Any other questions on Normalization?

Next: Shopping Cart

Shopping Cart Tips

Carefully read spec

- Make a list of tasks and workflows to test

Implement the tables from our ER diagram

Plan mockups of pages you will need

- Start with simplest requirements!
- Don't worry about making it pretty until later

If your code won't run... fix it!

Don't try to write a lot of code without testing