THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

6b. HW/Exam Review

CSCI 2541 Database Systems \& Team Projects

Wood \& Chaufournier

Today...

Exam Logistics

SQL HW Review

Normalization HW Review
Shopping Cart
Lab on Sessions

Exam Logistics

Wednesday starting at 12:45PM

Exam will be on on paper and ??on computer??

- Short answer, multiple choice, T/F, SQL queries, etc
- Expect questions similar to Homeworks

Class ends at 3:25PM

- You can use both periods if you need

If you have a disability that affects your ability to complete the exam, contact me by Monday!

You...

may:

- Use 1 page (double sided) of hand written notes
- Use my SQL and normalization reference sheets
- I will provide a copy

Suggestions

Make your own notes

- Explain the core concepts to yourself by rewriting in your own words
- Writing out your own version of the key rules (2NF vs 3NF, lossless decomposition rules, etc) will help you fully understand them!
- Try to solve the homework problems without looking at solutions

Be an efficient test taker

- Hopefully nobody will get 100% on the exam
- Focus first on the sections you are most confident with
- Don't waste too much time on any one question

Next: SQL Queries

Schema for Company DB

- Employee
- Connects to Department by Dno
- Department
- Connects to Employee with Mgr_ssn

く Dept_locations

- Connects to department
- Project
- Connects to Department

F Works_On

- Connects from Employee to
 Project
\checkmark Dependent
- Connects to Employee

SQL HW

7. Retrieve the list of employees, the projects they are working on, and their salary.

SQL HW

7. Retrieve the list of employees, the projects they are working on, and their salary.

Just because a project is in a department, doesn't mean that employee works on it! Need to join using the works_on table.

```
select dname,lname,fname,pname,salary
from department
JOIN employee on department.dnumber=employee.dno
JOIN works_on on works_on.essn = employee.ssn
JOIN project on project.pnumber = works_on.pno
```


Complex Queries

Sometimes you need a subquery within a query

```
SELECT name FROM
instructors
WHERE rating = (
    SELECT rating
    FROM instructors
    WHERE name = 'Wood
);
```

```
SELECT name
FROM city
WHERE country_id IN (
    SELECT country_id
    FROM country
    WHERE population > 20000000
);
```


Or you need to combine results from queries

- UNION, INTERSECT, EXCEPT


```
SELECT DISTINCT name FROM instructors
EXCEPT/UN'ON, FNTEDSEE
SELECT DISTINCT name from students;
```


Practice!

There is an extra copy of SQL HW3 if you want to try it again (Replit week 6)

Engage!

- Write a DB query problem and post on Slack in \#engage

Any other questions on SQL?

Next: Normalization

Normal Forms - more definitions

2NF: A schema is in 2NF if

- No nonprime attribute is partially dependent on the
candidate key(i.e., depends on only part of a candidate key)

3NF: A schema is in 3NF if

- It is in 2NF and,
- no nonprime attribute is transitively dependent on the primary key (LHS must be a full key, unless RHS is a key)
BCNF: A schema is in BCNF if
- It is in 3NF and,
- LHS must be super key

Normalization - Finding Keys

Q5b) Consider the relation $R 3=(A, B, C, D)$, with the following functional dependencies:
$A B->C$

What is the Candidate Key for this relation? What normal form does *R3* satisfy? You may assume that all tuples are unique and attributes are atomic.

Normalization - Finding Keys

Q5b) Consider the relation $R 3=(A, B, C, D)$, with the following functional dependencies:

$$
\text { - AB }->\mathbf{C} \text { and } \mathbf{C}->\mathbf{D}
$$

What is the Candidate Key for this relation? What normal form does *R3* satisfy? You may assume that all tuples are unique and attributes are atomic.

Candidate Key is $A B$ since: $A B \rightarrow C$ and $A B \rightarrow C->D$

so, with $A B$ we can determine all attributes
Normal form is 2NF since $\mathrm{C}->\mathrm{D}$ violates 3 NF

Decomposition

Q6 Suppose we decompose Relation R5 into two tables, R51 and R52:

$$
\begin{aligned}
-R 51 & =(A, B, D, E) \\
-R 52 & =(A, B, C)
\end{aligned}
$$

Will this be a loss-free decomposition, i.e., will we still be able to reconstruct all data by joining the two tables together? What normal form will *R51* and *R52* be in?

$$
\mathrm{R} 5=(\mathbf{A}, \mathbf{B}, \mathbf{C}, \underline{\mathbf{D}}, \mathbf{E})
$$

$$
A \rightarrow C
$$

BD -> C
ABD -> E

Decomposition

Q6 Suppose we decompose Relation R5 into two tables, R51 and R52:

- R51 = (A, B, D, E)
- R52 = (A, B, C)

$$
R 5=(\mathbf{A}, \underline{\mathbf{B}}, \mathbf{C}, \underline{\mathbf{D}}, \mathbf{E})
$$

Will this be a loss-free decomposition?
Lossless Decomposition test:
(from normalization lecture 2)

$$
\begin{gathered}
\mathrm{A}->\mathrm{C} \\
\mathrm{BD}->\mathrm{C} \\
\mathrm{ABD}->\mathrm{E}
\end{gathered}
$$

- R1, R2 is a lossless join decomposition of \mathbf{R} with respect to \mathbf{F} iff at least one of the following dependencies is in F+
- (R1 $\cap \mathbf{R 2)} \boldsymbol{\rightarrow} \mathbf{R 1} \mathbf{- R} \mathbf{2}$
- ($\mathbf{R 1}$ ก R2) $\boldsymbol{\rightarrow} \mathbf{R} \mathbf{2} \mathbf{- R 1}$

Decomposition

Q6 Suppose we decompose Relation R5 into two tables, R51 and R52:

- R51 = (A, B, D, E)
- $R 52=(A, B, C)$

Will this be a loss-free decomposition?
Lossless Decomposition test:
(from normalization lecture 2)

$$
R 5=(\mathbf{A}, \underline{\mathbf{B}}, \mathbf{C}, \underline{\mathbf{D}}, \mathbf{E})
$$

$$
A->C
$$

$$
B D->C
$$

$$
A B D->E
$$

- R1, R2 is a lossless join decomposition of \mathbf{R} with respect to \mathbf{F} iff at least one of the following dependencies is in F+
- (R1 $\cap \mathbf{R 2)} \rightarrow \mathbf{R 1} \mathbf{- R} \mathbf{2}$
- ($\mathbf{R 1}$ п R2) $\rightarrow \mathbf{R} \mathbf{2} \mathbf{- R 1}$

$$
\begin{aligned}
& R 51 \cap R 52=A B \\
& R 51-R 52=D E \\
& R 52-R 51=C
\end{aligned}
$$

$A B->C$ is part of $F+$

Decomposition

Decomposition

Q6 Suppose we decompose Relation R5 into twotables, R51 and R52:

$$
\begin{aligned}
& R 51=(\mathrm{A}, \mathrm{~B}, \underline{D}, \mathrm{E}) \quad \mathrm{BCNF} \\
& \mathrm{R} 52=(\mathrm{A}, \mathrm{~B}, \mathrm{C}) \\
& \hline
\end{aligned}
$$

What normal form will *R51* and *R52* be in?

$$
R 5=(\underline{\mathbf{A}}, \underline{\mathbf{B}}, \mathbf{C}, \underline{\mathbf{D}}, \mathbf{E})
$$

$$
\text { NF } \quad \begin{aligned}
& \mathrm{BD} \rightarrow \mathrm{C} \\
& \mathrm{ABD} \rightarrow \mathrm{E}
\end{aligned}
$$

R51 is 3NF/BCNF since only ABD->E holds and $A B D$ is the full candidate key $R 52$ is 1 NF since $A->C$ holds and A is a partial candidate key, so it cannot be 2NF

Decomposition

$$
\begin{aligned}
& \text { Q6 Suppose we decompose Relation R5 into two tables, R51 and R52 } \\
& \begin{array}{l}
\text { R51 }=(\mathbf{A}, \underline{B}, \underline{D}, E \\
\text { R52 }=(A, B)
\end{array} \\
& \text { R52 }=(A D C \\
& \text { moose and ensure } \\
& R \cdot \wedge R 2 \rightarrow R_{1}-R 2 \\
& R_{1} \cap R_{2} \rightarrow R_{2}-R_{1} \\
& R 5=(\mathbf{A}, \mathbf{B}, \mathrm{C}, \underline{\mathrm{D}}, \mathrm{E}) \\
& A \rightarrow C \\
& \frac{B D->C}{A B D \rightarrow E} \\
& {\left[\begin{array}{l}
B D \rightarrow A E \times \text { Los空flee } \\
B D \rightarrow C V
\end{array}\right.}
\end{aligned}
$$

Decomposition

Q6 Suppose we decompose Relation R5 into two tables, R51 and R52:

- $R 51=(\underline{A}, \underline{B}, \underline{D}, E)$
- $R 52=(A, B, C)$

$$
R 5=(\mathbf{A}, \underline{B}, C, \underline{D}, E)
$$

How can we decompose and ensure 3NF for all relations?

$$
A B K D
$$

$$
\frac{\mathrm{A} \rightarrow \mathrm{C}}{\frac{\mathrm{BD} \rightarrow \mathrm{C}}{\mathrm{ABD} \rightarrow \mathrm{E}}}
$$

R51 is already 3 NF
To fix R52 we could use

$$
\mathrm{R} 53=(\mathrm{A}, \mathrm{C})
$$

This must be 3NF
$R 51 \cap R 53=A$
R51-R53 = EDE
R53-R51 = C
A $\rightarrow \mathrm{C}$ is part of $\mathrm{F}+$

Any other questions on Normalization?

Next: Shopping Cart

Shopping Cart Tips

Carefully read spec

- Make a list of tasks and workflows to test

Implement the tables from our ER diagram
Plan mockups of pages you will need

- Start with simplest requirements!
- Don't worry about making it pretty until later

If your code won't run... fix it!

- Don't try to write a lot of code without testing

