THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

5a. Functional Dependencies

CSCI 2541 Database Systems & Team Projects

Wood

Slides adapted from Profs. Bhagi Narahari and Rahul Simha, and book by Silberschatz, Korth, and Sudarshan

Good and Bad Schemas

Functional Dependencies

Normal Forms based on Functional Dependencies

Normal Form Examples: 1NF

1NF: Attributes should be atomic and tables should have no repeating groups

Normal Form Examples: 2NF

2NF: No value in a table should be dependent on only part of a key that uniquely identifies a row

N	Customer ID	First Name	Surname	Telephone Number	
	123	Pooja	Singh	555-861-2025	
	123	Pooja	Singt	192-122-1111	BAD: First/Last
(456	San	Zhang	182-929-2929	name depend
	456	San	Zhang	(555) 403-1659 Ext. 53	
	789	John	Zhang	555-808-9633	Customer ID

VS Customer D **First Name Telephone Number** Surname **Customer ID** 123 Pooia Singh 123 555-861-2025 2NF Meets 123 192-122-1111 456 San Zhang 2NF 456 (555) 403-1659 Ext. 53 789 John Zhang 182-929-2929 456 780 555-808-9633

GW CSCI 2541 Databases: Wood & Chaufournier

Normal Form Examples: 3NF

3NF: No value should be able to be dependent on another non-key field

GW CSCI 2541 Databases: Wood & Chaufournier

Summary

1NF: ensures atomicity of cells and prevents repetition of identical column types 2NF: prevents data across rows

3NF: prevents repetition of data within a row

Dependencies

How can we **formally represent dependencies** between Attributes in a Relation?

Functional Dependencies

Use functional dependencies! (abbreviated FD)

We say a set of attributes \mathbf{X} functionally determines an attribute \mathbf{Y} if given the values of \mathbf{X} we always know the only possible value of \mathbf{Y} .

- Notation: $X \rightarrow Y$
- X functionally determines Y
- Y is functionally dependent on X

Sets of Functional Dependencies

We can do math on functional dependencies!

A functional dependency "holds" if it must be true for all legal relations

Functional Dependency Ops

Armstrong's Axioms: where A, B, C are sets of attributes

- Reflexive rule: if $B \subseteq A$, then $A \rightarrow B$ (if B is subset of $A \subseteq W \subseteq A$, then $A \rightarrow B$
- Augmentation rule: if $A \rightarrow B$, then $C A \rightarrow C B$
- **Transitivity rule:** if $A \rightarrow B$, and $B \rightarrow C$, then $A \rightarrow C$,

These rules are

- Sound and complete - generate all functional dependencies that hold.

 $\{GWID\} \rightarrow \{Name, Address, Major\}$

 $\{Major\} \rightarrow \{Dept_Name, Dept_Chair\}$

{GWID, CourseID, Semester, Year} \rightarrow Grade

Functional Dependency Ops

Armstrong's Axioms: where A, B, C are sets of attributes

- **Reflexive rule:** if $B \subseteq A$, then $A \rightarrow B$ (if B is subset of A)
- Augmentation rule: if $A \rightarrow B$, then $C A \rightarrow C B$
- **Transitivity rule**: if $A \rightarrow B$, and $B \rightarrow C$, then $A \rightarrow C$

These rules are

- Sound and complete — generate all functional dependencies that hold.

Bonus rules to make life easier:

- **Union rule**: If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds.
- **Decomposition rule**: If $\alpha \rightarrow \beta \gamma$ holds, then $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds.
- **Pseudotransitivity rule**: If $\alpha \rightarrow \beta$ holds and $\gamma \beta \rightarrow \delta$ holds, then $\alpha \gamma \rightarrow \delta$ holds.

Definition: Closure of a Set of FD's

Defn. Let **F** be a set of FD's. Its **closure**, **F**+, is the set of all FD's:

 ${X \rightarrow Y | X \rightarrow Y \text{ is derivable from F by} Armstrong's Axioms}$

Two sets of dependencies F and G are equivalent

- i.e., their closures are equal
- i.e., the same sets of FDs can be inferred from each

Example Closure

What FDs can we infer?

Example Closure

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B$$

$$A \rightarrow C$$

$$CG \rightarrow H$$

$$CG \rightarrow I$$

$$B \rightarrow H\}$$

Reflexive rule: if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ **Augmentation rule**: if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ **Transitivity rule**: if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$

A few members of F+ include:

- $A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
- $AG \rightarrow I$
 - by augmenting A → C with G, to get AG → CG and then transitivity with CG → I
- $CG \rightarrow HI$
 - by augmenting CG \rightarrow I to infer CG \rightarrow CGI, and augmenting of CG \rightarrow H to infer CGI \rightarrow HI, and then transitivity

Functional Dependencies and Keys

A Candidate Key is a minimal set of attributes which are sufficient to uniquely identify each tuple in a relation

- All other attributes must be functionally dependent on the set of attributes that make up the Candidate Key.

Thus a candidate key must be a minimal set of attributes which can appear on the left hand side of functional dependencies, but will produce a closure that includes all other attributes on the right hand side A candidate key must be a minimal set of attributes which can appear on the left hand side of functional dependencies, but will produce a closure that includes all other attributes on the right hand side

What is a candidate key for R? R = (A, B, C, G, H, H) $F = \{A \rightarrow B$ $A \rightarrow C$ $G \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H\}$ A candidate key must be a minimal set of attributes which can appear on the left hand side of functional dependencies, but will produce a closure that includes all other attributes on the right hand side

What is a candidate key for R?

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B$$

$$A \rightarrow C$$

$$CG \rightarrow H$$

$$CG \rightarrow I$$

$$B \rightarrow H\}$$

Good and Bad Schemas

Functional Dependencies

Normal Forms based on Functional Dependencies

Redefining 2NF

Using Functional Dependencies and Closures lets us more precisely define our Normal Forms

Second Normal Form: For every X → A that holds over relationship schema R, where A is a non-prime attribute (i.e., A is not an attribute in any candidate key)
1. either A ∈ X (it is trivial), or
2. X is a superkey for R, or
3. X is transitively dependent on a super key R

Easier to think of the opposite: There cannot be $X \rightarrow A$ where X is a partial candidate key for R

- Says nothing about non-prime to non-prime dependencies!

2NF Violations

4		F	>		$\sim 2/F$
(λ)		First Name	Surname	Telephone Number	$ \land \land$
()	123	Pooja	Singh	555-861-2025	C C
	123	Pooja	Singh	192-122-1111	Z
	456	San	Zhang	182-929-2929	エーモー
	456	San	Zhang	(555) 403-1659 Ext. 53	
	789	John	Zhang	555-808-9633	TATC
	843	John	$n 2h_{0}$	m ~	
	~ / /				

	Tournament	Voar	Winner	Winnerle Birtholace	TY->W
6	Tournament	<u>rear</u>	Winner	Binnplace	
2	Indiana` Invitational	1998	Al Fredrickson	Ohio	$W \rightarrow K $
	Cleveland Open	1999	Bob Albertson	New York	WIDR
	Des Moines Masters	1999	AI Fredrickson	Ohio	
	Indiana Invitational	1999	Chip Masterson	Kentucky	$\sqrt{2}$ NF

2NF Violations

ID	First Name	Surname	Telephone Number
123	Pooja	Singh	555-861-2025
123	Pooja	Singh	192-122-1111
456	San	Zhang	182-929-2929
456	San	Zhang	(555) 403-1659 Ext. 53
789	John	Zhang	555-808-9633

ID -> {First Name, LastName} Violates 2NF since ID is a partial Candidate Key

<u>Tournament</u>	Year	Winner	Winner's Birthplace
Indiana Invitational	1998	AI Fredrickson	Ohio
Cleveland Open	1999	Bob Albertson	New York
Des Moines Masters	1999	AI Fredrickson	Ohio
Indiana Invitational	1999	Chip Masterson	Kentucky

No 2NF violation

Redefining 3NF

Third Normal Form (3NF): For every $X \rightarrow A$ that

holds over relationship schema R,

1. either $\mathbf{A} \in \mathbf{X}$ (it is trivial), or

2. X is a superkey for R, or date
3. A is a member of some key for R

Easier to think of: X must be a full candidate key, unless A itself is a part of a candidate key

"Every non-key attribute must provide a fact about the Key, the whole Key, and nothing but the Key... so help me Codd"

$\frac{3NF \text{ Violations}}{C \rightarrow F \leq B A F}$

Customer ID	Eirot Nomo	Surnama	Dirthdov	4.00	Fox Color
Customer ID	FIISt Mallie	Sumame	ыншау	Aye	
123	Pooja	Singh	1/4/1984	37	Blue
456	San	Zhang	3/15/2001	19	Blue
789	John	Zhang	11/12/2006	14	Buff

<u>Tournament</u>	Year	Winner	Wing :- Birthplace
Indiana Invitational	1998	AI Fredrickson	Ohio
Cleveland Open	1999	Bob Albertson	New York
Des Moines Masters	1999	AI Fredrickson	Ohio
Indiana Invitational	1999	Chip Masterson	Kentucky

B-JAJX3NP

3NF Violations

C -> F,S,B,A,F B->A

Customer ID	First Name	Surname	Birthday	Age	Fav Color
123	Pooja	Singh	1/4/1984	37	Blue
456	San	Zhang	3/15/2001	19	Blue
789	John	Zhang	11/12/2006	14	Buff

Birthday->Age holds, but Birthday is not a superkey

T,Y -> W, WB W -> WB

<u>Tournament</u>	Year	Winner	Winner's Birthplace
Indiana Invitational	1998	AI Fredrickson	Ohio
Cleveland Open	1999	Bob Albertson	New York
Des Moines Masters	1999	AI Fredrickson	Ohio
Indiana Invitational	1999	Chip Masterson	Kentucky

Winner -> Birthplace holds, but Winner is not a superkey

Normal Forms 1-3

1NF: Attributes should be atomic and tables should have no repeating groups

- Prevents messiness within a cell and repetition of rows
- **2NF**: There cannot be $X \rightarrow A$ where X is a partial candidate key for R
 - Doesn't forbid non-prime to non-prime dependencies
 - Prevents repetition of cells across rows

3NF: There cannot be $X \rightarrow A$ where X is not a full candidate key for R (unless A is a Key)

- Only allows dependencies on Keys
- Prevents repetition of data within a row

Good and Bad Schemas

Functional Dependencies

Even more normal forms!

Normal Forms 1-3

1NF: Attributes should be atomic and tables should have no repeating groups

- Prevents messiness within a cell and repetition of rows

2NF: There cannot be $X \rightarrow A$ where X is a partial candidate key for R

- Doesn't forbid non-prime to non-prime dependencies
- Prevents repetition of cells across rows

<u>3NF</u>: There cannot be $X \rightarrow A$ where X is not a full

candidate key for R (unless A is a Key)

- Only allows dependencies on Keys
- Prevents repetition of data within a row

Normal Form

Normal form reference:

- 2NF: Cannot have partial Key on left hand side (LHS)
- 3NF: Meet 2NF and LHS must be full Candidate Key or RHS must be a key

	First name	<u>Cid</u>	Subj	Num	Grad
1	Sam	570103	SW	cs143	В
23	Dan	550103	DB	cs178	A

Functional Dependencies

ID, Cid \rightarrow Num, Grade Num \rightarrow Subj

What normal form is this?

X2NF

Normal Form

Normal form reference:

- 2NF: Cannot have partial Key on left hand side (LHS)
- 3NF: Meet 2NF and LHS must be full Candidate Key or RHS must be a key

ID	First name	<u>Cid</u>	Subj	Num	Grad
1	Sam	570103	SW	cs143	В
23	Dan	550103	DB	cs178	A

Functional Dependencies $ID \rightarrow FirstName$ partial key ID violates 2NF!

ID, Cid \rightarrow Num, Grade

Num → Subj non-prime LHS would also violate 3NF!

Only meets 1NF

How to Judge Decomposition?

 $\begin{array}{c} \text{ID} \rightarrow \text{FirstName} \\ \text{ID}, \text{Cid} \rightarrow \text{Num}, \text{Grade} \\ \text{Num} \rightarrow \text{Subj} \\ \hline \end{array} \\ \begin{array}{c} \text{Osstess Decomposition test:} \\ \text{CID} \rightarrow \text{ID}, \text{Nome} \\ \text{Osstess Decomposition test:} \\ \hline \end{array} \\ \begin{array}{c} \text{R1}, \text{R2} \text{ is a lossless join decomposition of } \text{R} \text{ with respect to } \text{F} \\ \text{iff at least one of the following dependencies is in } \text{F} \\ \hline \end{array} \\ \begin{array}{c} \text{CR1} \cap \text{R2} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R1} - \text{R2} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R1} - \text{R2} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \hline \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array}$ \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \\ \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R2} - \text{R1} \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text{R1} \end{array} \\ \begin{array}{c} \text{R2} \rightarrow \text{R2} - \text

Lossless Decomposition

- R1, R2 is a lossless join decomposition of R with respect to F
 iff at least one of the following dependencies is in F+
- (R1 ∩ R2) → R1 R2
- $(R1 \cap R2) \rightarrow R2 R1$

Dependency Preservation

We also must maintain dependences

Dependency Preservation

We also must maintain dependences

After decomposition from **R** to **R1 ... Rn**, the closure of FDs of all **R1...Rn** must be equivalent to that of **R**

R1 = ID, FirstName, CID **R2 = CID,** Sub, Num, Grade

or R1,R2 will lose the ID,CID -> Num, Grade FD

ID → FirstName ID, Cid → Num, Grade Num → Subj

R3 = ID, FirstName **R4 = ID, CID,** Sub, Num, Grade

R3,R4 will maintain all FDs

It is **always possible** to decompose a relation R into a set of relations R1...Rn which is **dependency preserving** and **lossless** that is in 3NF

3NF is the baseline for acceptable DB normalization in practice!

but 3NF is not perfect...

GW CSCI 2541 Databases: Wood & Chaufournier

When does 3NF fail?

Suppose we want to store addresses:

Meets 3NF since LHS is a full Key or RHS is a Key

3NF: There cannot be $X \rightarrow A$ where X is not a full candidate key for R (unless A is a Key)

When does 3NF fail?

ADDR_INFO(<u>CITY</u>, <u>ADDRESS</u>, ZIP) {CITY, ADDRESS} \rightarrow ZIP {ZIP} \rightarrow {CITY}

3NF: There cannot be $X \rightarrow A$ where X is not a full candidate key for R (unless A is a Key)

When does 3NF fail?

3NF does not prevent insertion/update of tuples which violate our FDs!

3NF vs BCNF

Third Normal Form (3NF): For every $X \rightarrow A$ that holds

over relationship schema R,

1. either $\boldsymbol{A}\in\boldsymbol{X}$ (it is trivial), or

2. X is a superkey for R, or

3. A is a member of some key for R

Option 3 can result in update anomalies!

Boyce-Codd Normal Form (BCNF) resolves this issue:

For every $X \rightarrow A$ that holds over relationship schema **R**, 1. either $A \in X$ (it is trivial), or 2. X is a superkey for **R**

BCNF

BCNF is stricter than 3NF

- If a relation is in BCNF, it is also in 3NF;
- if it is not in 3NF, it is not in BCNF

lossless decomposition is known.

Normalization Summary

Functional Dependencies: Capture the dependencies between attributes

Normalization: Provides a schema that ensures functional dependencies will be kept consistent, without losing data

Normal Forms: Try to achieve BCNF, but 3NF s OK in some cases (1NF/2NF -> bad design!)

2NF vs 3NF vs BCNF

Second Normal Form: For every $X \rightarrow A$ that holds over relationship schema **R**,

1. If **A** is a non-prime attribute, then **X** cannot be a partial Candidate Key

Third Normal Form (3NF): For every $X \rightarrow A$ that holds over relationship schema **R**,

1. either $\boldsymbol{A}\in\boldsymbol{X}$ (it is trivial), or

2. X is a superkey for R, or

3. A is a member of some key for R

Option 3 can result in update anomalies!

Boyce-Codd Normal Form (BCNF) resolves this issue:

For every $X \rightarrow A$ that holds over relationship schema R,

1. either $\boldsymbol{A} \in \boldsymbol{X}$ (it is trivial), or

2. X is a superkey for R