THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

2. Relational Model

CSCI 2541 Database Systems & Team Projects

Slides adapted from Prof. Bhagi Narahari; Silberschatz, Korth, and Sudarshan; and Ramakrishnan, Gerhke, and Lawrence

Admin Stuff

HW 1 due yesterday

- Test cases should give you idea of your grade

Optional RPS HW due Jan 23

Read our materials/instructions carefully

Read the syllabus for course policies

Watch Slack for ways to **#engage** and ask

#questions

Last week...

Structure that is independent of the underlying file formats Queries to flexibly read, update, and delete information Transactions that provide guarantees about multi-user consistency

Relational Model Definitions

Constraints and Relationships

Lab!

...this wee

Data

Let's store some information about professors

- How?

NOUT Parmer Taylor Tim Gabe 15 ...

Tables

A Table is a set of rows and columns...

- A column defines an attribute that can have different values
- A row represents related attributes that together represent a data element

F	Instructo	r Table	1		Course Table	e	
ID	name	dept_name	salary	course_id	title	dept_name	credits
10101 12121 15151 22222 32343 33456	Srinivasan Wu Mozart Einstein El Said Gold	Comp. Sci. Finance Music Physics History Physics	65000 90000 40000 95000 60000 87000	BIO-101 BIO-301 BIO-399 CS-101 CS-190 CS-315 CS-319	Intro. to Biology Genetics Computational Biology Intro. to Computer Science Game Design Robotics Image Processing	Biology Biology Comp. Sci. Comp. Sci. Comp. Sci. Comp. Sci.	4 4 3 4 4 3 3
45565 58583 76543 76766 83821 98345	Katz Califieri Singh Crick Brandt Kim	Comp. Sci. History Finance Biology Comp. Sci. Elec. Eng.	75000 62000 80000 72000 92000 80000	CS-347 EE-181 FIN-201 HIS-351 MU-199 PHY-101	Database System Concepts Intro. to Digital Systems Investment Banking World History Music Video Production Physical Principles	Comp. Sci. Elec. Eng. Finance History Music Physics	3 3 3 3 3 4

Tables = Relations										
A Relation	is a se	t of t	Cé up	les a	nd attribute	S				
 Set: an unordered list of unique elements Why? Tuple: a sequence of values Attribute: a named type with values in a domain 										
ID name	r Relation	salary		course_id	Course Relat	ion dept_name	credits			
10107 Srinivasan 12121 Wu 15151 Mozart 22222 Einstein 32343 El Said 33456 Gold 45565 Katz 58583 Califieri 76543 Singh 76766 Crick 83821 Brandt	Comp Sci. Finance Music Physics History Physics Comp. Sci. History Finance Biology	65000 90000 40005 95000 60000 87000 75000 62000 80000 72000		BIO-101 BIO-301 BIO-399 CS-101 CS-190 CS-315 CS-319 CS-347 EE-181 FIN-201 HIS-351	Intro. to Biology Genetics Computational Biology Intro. to Computer Science Game Design Robotics Image Processing Database System Concepts Intro. to Digital Systems Investment Banking World History	Biology Biology Comp. Sci. Comp. Sci. Comp. Sci. Comp. Sci. Comp. Sci. Elec. Eng. Finance History	4 4 3 4 4 3 3 3 3 3 3 3 3 3 3			

Schema

Defines the structure of one or more Relations

- A1, A2, ..., An are attributes
- R = (A1, A2, ..., An) is a relation schema

Example: instructor = (ID, name, dept_name, salary)

- A relation instance r defined over schema B is denoted by r (R).
- The current values of a relation are specified by a table
- An element **t** of relation **r** is called a tuple and is represented by a row in a table

Example DB Schema

Relational Model Definitions

A **relation** is a table with columns and rows.

An **attribute** is a named column of a relation.

A **tuple** is a row of a relation.

A **domain** is a set of allowable values for one or more attributes.

The **degree** of a relation is the number of attributes it contains.

The **cardinality** of a relation is the number of tuples it contains.

A **relational database** is a collection of normalized relations with distinct relation names.

Definitions

Degree = Cardinality =

Relation Property Summary

- 1. Each relation name is unique
 - No two relations have the same name

2. Each cell of the relation (value of a domain) contains exactly one atomic (single) value and cannot be empty... in practice SQL allows NULL

- 3. Each attribute of a relation has a distinct name
- 4. Values of an attribute are all from the same domain
- 5. Each tuple is distinct. There are no duplicate tuples
 - Theoretically... in practice, SQL supports "bags" (allow duplicates)
- 6. Order of attributes is not important
 - Note difference from mathematical def of relations
 - Tuple (x,y) is not the same as (y,x) in mathematical definition
 - Reason: attribute names represent domain and can be reordered
- 7. Order of tuples is not important

Relational Model Co Definitions R

Constraints and Relationships

Lab!

onwards...

Constraints

Relation scheme defines the types and domain of all attributes

- Can enforce constraints whenever tuples are added/modified

This can enforce many constraints to protect the integrity of your data

- Can't insert a string into an Integer type attribute
- A State field could limit domain to (AL, AK, AZ...WY)
- An SSN attribute must follow form (xxx-xx-xxxx)
- Price must be > 0.00
- ... but not all!
 - Application or "business logic" may not be feasible
 - Example: "An employee can't work more than 40 hours per week across all jobs"

Keys

Superkey of R:

- A set of attributes that is sufficient to uniquely identify each tuple in r(R)

	ID	name	dept_name	salary
1	22222	Einstein	Physics	95000
	12121	Wu	Finance	90000
	32343	El Said	History	60000
	45565	Katz	Comp. Sci.	75000
	98345	Kim	Elec. Eng.	80000
	76766	Crick	Biology	72000
	10101	Srinivasan	Comp. Sci.	65000
	58583	Califieri	History	62000
	83821	Brandt	Comp. Sci.	92000
	15151	Mozart	Music	40000
	33456	Gold	Physics	87000
	76543	Singh	Finance	80000

The professor relation

What is a superkey for this relation?

Keys

Superkey of R:

 A set of attributes that is sufficient to uniquely identify each tuple in r(R)

		Are		course_id	sec. <mark>i</mark> d	semester	year	building	room_number	time_slot_ia
				DIC 101	1	Cummor		Painter	514	В
				BIO-301	1	Summer	2018	Painter	514	A
				CS-101	1	Fall	2017	Packard	101	Н
			Y I	CS-101	1	Spring	2018	Packard	101	F
vvhat	IS a			CS-190	1	Spring	2017	Taylor	3128	E
				CS-190	2	Spring	2017	Taylor	3128	A
sunerkey	for	thic		CS-315	1	Spring	2018	Watson	120	D
Supericy		4110		CS-319	1	Spring	2018	Watson	100	В
rolati	n^2			CS-319	2	Spring	2018	Taylor	3128	C
relati.	ן ווכ			CS-347	1	Fall	2017	Taylor	3128	A
		V		EE-181	1	Spring	2017	Taylor	3128	C
				FIN-201	1	Spring	2018	Packard	101	В
			- IV	HIS-351	1	Spring	2018	Painter	514	C
				MU-199	1	Spring	2018	Packard	101	D
				PHY-101	1	Fall	2017	Watson	100	А
						The se	ectio	<i>n</i> relati	on	

Candidate and Primary Keys

Superkey of R:

 A set of attributes that is sufficient to uniquely identify each tuple in r(R)

Candidate Key of R: A "minimal" superkey

- A Candidate Key is a superkey K such that removal of any attribute from K results in a set of attributes that is not a superkey (does not possess the superkey uniqueness property)
- A Candidate Key is a Superkey but opposite may not be true

Primary Key: The Candidate Key chosen to represent a relation/table

Super vs Candidate Key

Possible superkeys:

- <ID, name>,
- <ID, dept_name>,
- <ID, name, dept_name, salary> ---

Candidate Key must be minimal:

- <ID>
- <course_id, sec_id, semester, year>

Primary keys are listed first and underlined when showing the

schema

classroom(building, room_number, capacity) department(dept_name, building, budget) course(<u>course_id</u>, title, dept_name, credits) instructor(<u>ID</u>, name, dept_name, salary)

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2017	Painter	514	В
BIO-301	1	Summer	2018	Painter	514	Α
CS-101	1	Fall	2017	Packard	101	Н
CS-101	1	Spring	2018	Packard	101	F
CS-190	1	Spring	2017	Taylor	3128	E
CS-190	2	Spring	2017	Taylor	3128	Α
CS-315	1	Spring	2018	Watson	120	D
CS-319	1	Spring	2018	Watson	100	В
CS-319	2	Spring	2018	Taylor	3128	С
CS-347	1	Fall	2017	Taylor	3128	Α
EE-181	1	Spring	2017	Taylor	3128	С
FIN-201	1	Spring	2018	Packard	101	В
HIS-351	1	Spring	2018	Painter	514	С
MU-199	1	Spring	2018	Packard	101	D
PHY-101	1	Fall	2017	Watson	100	Α

Picking a Primary Key

Every Relation must have a Primary Key

How to pick from the candidates?

- Based on business logic
- Is "Name" unique? depends on your business/ application!

- Ideally Primary Key should be something that never/rarely changes Why?

Primary Key is another type of **constraint**

- DB will enforce uniqueness of the Primary Key attributes

The magic of Databases

A database helps us **connect** multiple Relations

How are these Relations connected to each other?

PREREQUISITE

Course_number | Prerequisite_number

Foreign Keys

Defines a relationship connecting tuples in two relations

- The referencing relation and the referenced relation
- Defines another type of constraint Referential Integrity
- Foreign Key constraints must connect to the Primary Key in the referenced relation

GRADE_REPORT.Student_number must match a value in STUDENT.Student_number PREREQUSITE.Course_number and

Prequisite_number must match value in COURSE.Course_number, etc

etc

Name Student number Class Major

COURSE

Course_name Course_number Credit_hours Department

PREREQUISITE

Course_number | Prerequisite_number

SECTION

Section_identifier Course_number Semester Year Instructor

GRADE REPORT

Sturiant_number Section_identifier Grade

Referential Integrity

Only students listed in the Students relation should be allowed to enroll for courses.

- If a value of sid appears in Enrollment relation then it MUST appear in Student relation
 - "Only students can take courses"
 - Database is automatically enforcing application requirements for you... can your Array do that?

En	rollment		Student				
sid	cid	grade		suueni			
53666	Jazz101	<u> </u>	sid	name	login	age	gpa
53666	Reggae203	В –	53666	Jones	jones@cs	18	3.4
53650	Topology112	A	53688	Smith	smith@eecs	18	3.2
53666	History105	B	53650	Smith	smith@math	19	3.8

Full University Schema Diagram

Primary Key Selection

Primary Key Selection

Why do we use multiple attributes in a Primary Key?

- section(*course_id*, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, ...)
- takes(ID, course id, sec id, semester, year, grade)

 Using a single field looks simpler, but it prevents the benefit of the DB enforcing uniqueness

 Using sec_id_number as foreign key requires us to look up info from multiple tables which may be less efficient

Primary Key Selection

Consider this:

- takes(ID, course_id, sec_id, semester, year, grade)

This Primary Key allows a student to be registered for multiple sections of the same course at once!

But if we remove sec_id, then we will not have a complete Foreign Key!

- We must match all fields in the other relation's PK to qualify as a Foreign Key
 - In practice, many SQL DBs don't support Referential Integrity without a
 - complete Foreign Key

Relational Model Definitions

Constraints and Relationships

Lab!

onwards...