
DB Performance
CSCI 2541 Database Systems & Team Projects

Wood

Slides adapted from Prof. Bhagi Narahari, Rahul Simha, and Silberschatz, Korth, and Sudarshan

GW CSCI 2541 Databases: Wood

Disk Access Times
Average time to access a target
sector approximated by :

Seek time (Tavg seek)

﹘ Time to position heads over cylinder

containing target sector.

﹘ Typical Tavg seek = 9 ms

Rotational latency (Tavg rotation)

﹘ Time waiting for first bit of target sector

to pass under r/w head.

﹘ Tavg rotation = 1/2 x 1/RPMs x 60 sec/

1 min = 6 ms

Transfer time (Tavg transfer)	

﹘ Time to read the bits in the target

sector.

﹘ Tavg transfer = 1/RPM x 1/(avg #

sectors/track) x 60 secs/1 min.

 2

Platters

Spindle

Disk head

Arm movement

Tracks

Sector

Taccess = Tavg seek + Tavg rotation + Tavg transfer

= ~200 MB/sec

Disks are slow! 
~10ms per random read

4K B

O

GW CSCI 2541 Databases: Wood

Recap: File Organization
Tables mapped as File

﹘ Row is a Record

﹘ Column is field (in record)

Data stored in secondary storage

﹘ Disks – organized as number of disk blocks

Records mapped to disk blocks

Size of file in disk blocks/pages: N

﹘ Number of records/tuples/rows: n

﹘ Size disk block (i.e., page): b bytes

﹘ Size of record (row): r bytes

﹘ Blocking factor p = b/r

﹘ File size N = n/b pages

Efficiency/performance of a file organization

﹘ Time for Search, Insert, Delete

 3

ÉIJ

200 bytes

GW CSCI 2541 Databases: Wood

Example
File of 1,000,000 records

record size 200 bytes

blocks are 4096 bytes

﹘ n = 1,000,000

﹘ r = 200

﹘ b = 4096

﹘ Blocking factor (records per block), p = b/r = __________

﹘ file size = N = n/p = ______________

 4

fill in the blanks

records blow
4096 200

20 Flock
50,000 blocks

50,000 x 10ms a 500,000 millisecond

500 seconds

GW CSCI 2541 Databases: Wood

Example
File of 1,000,000 records

record size 200 bytes

blocks are 4096 bytes

﹘ n = 1,000,000

﹘ r = 200

﹘ b = 4096

﹘ Blocking factor, p = b/r = 4096/200 = 20

﹘ file size = N = n/p = 1,000,000/20 = 50,000 blocks

 5

GW CSCI 2541 Databases: Wood

File Organizations
File organization determines how records are
physically placed on disk

﹘ heap file: no particular order

﹘ sorted file

﹘ indexed file

﹘ hash index

﹘ tree indices

Efficiency of file organization typically measured in
terms of number of disk/SSD accesses to fetch data

 6

GW CSCI 2541 Databases: Wood

Heap File
Unorganized “heap” of data

Each block has 200  
records

1M records, 50K blocks

SELECT * FROM profs
WHERE ID = 231531

 7

… (1M records, 50K blocks)

Worst case query time? 
Average query time?0 so ooo

50,000

su

GW CSCI 2541 Databases: Wood

Heap File
Unorganized “heap” of data

Each block has 200  
records

1M records, 50K blocks

INSERT INTO profs
VALUES (…)

 8

… (1M records, 50K blocks)

Worst case query time? 
Average query time?

a

GW CSCI 2541 Databases: Wood

Heap File Performance: Example
Successful lookup: average ½ N= 25,000

﹘ worst case is N= n/p= 50,000 disk accesses

﹘ At 10ms disk access time, this is 500 seconds ~ 8

minutes!

insertion = 2 disk accesses

﹘ unless you need to check uniqueness!

deletion = ½(n/p)+1 = 25,001

﹘ worst case = 50,001

Heap file summary: not great

 9

GW CSCI 2541 Databases: Wood

Attempt 1: better organize the records on disk

Heap file will not cut it!

Need to organize physical records on the file in
some “smart” manner

﹘ Sorted file

﹘ Hash file

 10

GW CSCI 2541 Databases: Wood

Sorted File
Sort by ID

Each block has 200  
records

1M records, 50K blocks

SELECT * FROM profs
WHERE ID = 231531

 11

… (1M records, 50K blocks)

Worst case query time? 
Average query time?

iplot

logMesons

GW CSCI 2541 Databases: Wood

Sorted File
Sort by ID

Each block has 200  
records

1M records, 50K blocks

INSERT INTO profs
VALUES (…)

 12

… (1M records, 50K blocks)

Worst case query time? 
Average query time?

j

SOK

GW CSCI 2541 Databases: Wood

Other approaches…
Sorted File… how long ?

﹘ Search time: Log (Number of disk blocks)

﹘ Log (50,000) blocks = 16 IF the blocks are contiguous on

the disk

﹘ Big/unrealistic assumption that records are stored in

consecutive blocks on disk

﹘ Insertion: Could be terrible (N) if we need to rewrite

everything in order (in practice we will avoid this)

 13

Even if we don't care about insertion cost, is a sorted
file a perfect solution?

O

GW CSCI 2541 Databases: Wood

Attempt 2: separate lookup from file structure

The structure of the file on disk can't be perfect for
all query types! We need to try something else...

Many queries reference small portion records

﹘ DBMS should be able to locate these without having to

search all records

Create another type of record (pointer?!) which
contains subset of the information in the record

﹘ Analogy: Index in a book or Card Catalog in a library

 14

M sorted Pointers
small

GW CSCI 2541 Databases: Wood

Index Basics
An index allows us to more quickly  
find a piece of data

Search Key
﹘ Value to be 

searched for

Index maps from  
a Search Key to a 
record in a data block

Index will be a separate 
file on disk - need to keep it up to date!

 15

Query:
 Find salary of
 ‘Smith’

scan
data
to
answer
query

Data
(heap file)

Data

(heap file)

scan all data (usually)

scan only some data

INDEX
(data +

programs)

scan some
index data

b blocks

− O(b)

− O(1)

− O(log b)

Plain search

Index
 search

o

GW CSCI 2541 Databases: Wood

Index Benefits
Even if we have to scan the entire index, why will
this be better than scanning the entire data file?

 16

Query:
 Find salary of
 ‘Smith’

scan
data
to
answer
query

Data
(heap file)

Data

(heap file)

scan all data (usually)

scan only some data

INDEX
(data +

programs)

scan some
index data

b blocks

− O(b)

− O(1)

− O(log b)

Plain search

Index
 search

GW CSCI 2541 Databases: Wood

Dense Index
A dense index contains an entry for every data record

Index field specifies what attribute the index lets you search

﹘ A primary index is an index on a field that is the primary key of

the data file (file might be sorted on the primary key!)

﹘ A secondary index is not on a primary key

 17

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

index

I
s 0

I
i

GW CSCI 2541 Databases: Wood

Non-Dense Index?
A dense index contains an entry for every data
record

 18

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Do we really need an index entry for
every record?? Why not?

15230

goIs
of

GW CSCI 2541 Databases: Wood

Non-Dense Index?
A dense index contains an entry for every data
record

 19

Do we really need an index entry for
every record?? Why not?

If records are
sorted, we can use
a sparse index to
jump to the right

range, and then do
binary search

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

I 523
Q

GW CSCI 2541 Databases: Wood

Multiple Indexes
We can have multiple indexes to allow us to find different
search keys

﹘ All index files will map to records in the same data file

Secondary index may go to non-unique key! ("Clustering index")

﹘ Each index will map to a bucket with pointers to one or more records

 20

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

10101
32343
76766

Primary
Index on ID

(Sparse)Secondary
Index on Salary

(Dense)

IDName Dept.Salary
10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

O

GW CSCI 2541 Databases: Wood

Index Evaluation Metrics
Index methods can be evaluated for functionality, efficiency,
and performance.

The functionality of an index can be measured by the
types of queries it supports. Two query types are common:

﹘ exact match on search key

﹘ query on a range of search key values

The performance of an index can be measured by the time
required to execute queries and update the index.

﹘ Access time, update, insert, delete time

The efficiency of an index is measured by the amount of
space required to maintain the index structure.

 21

GW CSCI 2541 Databases: Wood

Index Performance
Our DB: 1M records, 50K disk blocks

Heap file: 50K disk accesses worst case

Sorted File: Log (50,000) blocks = 16

Indexed Sorted File?

﹘ Suppose 10 byte key + 10 byte record pointer = 20 bytes

﹘ 4KB page -> 200 index records per page

Dense index:

﹘

﹘

Sparse index:

﹘

﹘

 22

How big will index be? How many accesses?

I O n in

0 160ms

__

it
Tore cords page 5,000 index

blocks
10g 5000 8 13

GW CSCI 2541 Databases: Wood

Index Performance
Our DB: 1M records, 50K disk blocks

Heap file: 50K disk accesses worst case

Sorted File: Log (50,000) blocks = 16

Indexed Sorted File?

﹘ Suppose 10 byte key + 10 byte record pointer = 20 bytes

﹘ 4KB page -> 200 index records per page

Dense index:

﹘ 1M records / 200 = 5,000 index pages

﹘ Log(5000) = 12 + 1 = 13 disk accesses

Sparse index: 1 index record per disk block

﹘ 50K / 200 = 250 index pages

﹘ Log(250) = 8 + 1 = 9 disk accesses

 23

books

Io

GW CSCI 2541 Databases: Wood

Large Index

 24

What do we do if index gets too
large?

GW CSCI 2541 Databases: Wood

Multi-layer Indexes
We can create an index for our index!

Each index layer 
speeds up search 
but consumes  
more space

 25

ID

1

2

3

4

5

6

.

.

.

1

4

7

10

13

16

19

22

25

28

31

34

37

40

1

22

43

61

82

103

124

145

166

.

.

.

.

.

.

.

.

.
DATA FILEINDEX

data block

index block

1

145

Sparse index: 1 index record per disk block

﹘ 50K / 200 = 250 index pages

﹘ Log(250) = 8 + 1 = 9 disk accesses

2 Layer Index ???

GW CSCI 2541 Databases: Wood

Multi-layer Indexes
We can create an index for our index!

Each index layer 
speeds up search 
but consumes  
more space

 26

ID

1

2

3

4

5

6

.

.

.

1

4

7

10

13

16

19

22

25

28

31

34

37

40

1

22

43

61

82

103

124

145

166

.

.

.

.

.

.

.

.

.
DATA FILEINDEX

data block

index block

1

145

Sparse index: 1 index record per disk block

﹘ 50K / 200 = 250 index pages

﹘ Log(250) = 8 + 1 = 9 disk accesses

2 Layer Index:

﹘ 50K / 200 = 250 index pages in layer 1

﹘ 250/200 = 2 pages in layer 2

﹘ Log(2) + 1 + 1 = 4 disk accesses

GW CSCI 2541 Databases: Wood

Alternatives
Indexes and sorted files work pretty well, but don't
handle updates well

﹘ Performance degrades as files get larger

﹘ May need to reorganize data file and index file

B+-Trees are data structures customized for
database storage and indexing

﹘ Allow efficient searching, including range queries

﹘ Automatically reorganizes itself with small, local,

changes, in the face of insertions and deletions.

﹘ Reorganization of entire file is never required to maintain

performance.

 27

GW CSCI 2541 Databases: Wood

B+-Tree
Efficient, dense, multi-level index

 28

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

Takes the concepts we
covered today and builds
them into a data structure

GW CSCI 2541 Databases: Wood

Indexes in practice
DBMS will allow you to create an index on the fields
you expect will have the most searches

Now all WHERE Persons.LastName = "..."
queries will be faster!

﹘ But all updates to Persons will be (slightly) slower

Your project DBs will all fit in memory, so no
significant benefit from using indexes...

 29

CREATE INDEX idx_lastname

ON Persons (LastName);

GW CSCI 2541 Databases: Wood

Summary
Yet one more amazing thing that the DBMS can do
for you!

Way better than needing to write your own code to
optimize a query or worry about how to layout data
on disk yourself!

 30

